Maximally localized Wannier functions for entangled energy bands

نویسندگان

  • Ivo Souza
  • Nicola Marzari
  • David Vanderbilt
چکیده

We present a method for obtaining well-localized Wannier-like functions ~WF’s! for energy bands that are attached to or mixed with other bands. The present scheme removes the limitation of the usual maximally localized WF’s method @N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12 847 ~1997!# that the bands of interest should form an isolated group, separated by gaps from higher and lower bands everywhere in the Brillouin zone. An energy window encompassing N bands of interest is specified by the user, and the algorithm then proceeds to disentangle these from the remaining bands inside the window by filtering out an optimally connected N-dimensional subspace. This is achieved by minimizing a functional that measures the subspace dispersion across the Brillouin zone. The maximally localized WF’s for the optimal subspace are then obtained via the algorithm of Marzari and Vanderbilt. The method, which functions as a postprocessing step using the output of conventional electronic-structure codes, is applied to the s and d bands of copper, and to the valence and low-lying conduction bands of silicon. For the low-lying nearly-free-electron bands of copper we find WF’s which are centered at the tetrahedral-interstitial sites, suggesting an alternative tight-binding parametrization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximally localized generalized Wannier functions for composite energy bands

We discuss a method for determining the optimally localized set of generalized Wannier functions associated with a set of Bloch bands in a crystalline solid. By ‘‘generalized Wannier functions’’ we mean a set of localized orthonormal orbitals spanning the same space as the specified set of Bloch bands. Although we minimize a functional that represents the total spread (n^r &n2^r&n 2 of the Wann...

متن کامل

Maximally-localized Wannier functions in perovskites: Cubic BaTiO3

The electronic ground state of a periodic crystalline solid is usually described in terms of extended Bloch orbitals; localized Wannier functions can alternatively be used. These two representations are connected by families of unitary transformations, carrying a large degree of arbitrariness. We have developed a localization algorithm that allows one to iteratively transform the extended Bloch...

متن کامل

Effect of Hubbard U on the construction of low-energy Hamiltonians for LaMnO3 via maximally localized Wannier functions

We use maximally localized Wannier functions to construct tight-binding (TB) parametrizations for the eg bands of LaMnO3 based on first-principles electronic structure calculations. We compare two different ways to represent the relevant bands around the Fermi level: (i) a d-p model that includes atomic-like orbitals corresponding to both Mn(d) and O(p) states in the TB basis, and (ii) an effec...

متن کامل

4 Wannier Functions and Construction of Model Hamiltonians

5 Examples of applications 16 5.1 Wide versus narrow energy window: SrVO3 . . . . . . . . . . . . . . . . . . . 17 5.2 Unfolding band structures: LaOFeAs . . . . . . . . . . . . . . . . . . . . . . . 18 5.3 Entangled bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.4 Spin-orbit coupling: Sr2IrO4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.5 Wannier f...

متن کامل

Maximally localized Wannier functions for GW quasiparticles

We review the formalisms of the self-consistent GW approximation to many-body perturbation theory and of the generation of optimally localized Wannier functions from groups of energy bands. We show that the quasiparticle Bloch wave functions from such GW calculations can be used within this Wannier framework. These Wannier functions can be used to interpolate the many-body band structure from t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001